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Application Performance 

• Computation (FLOPs) 
– Processor 

• Inter-process Communication 
–  Interconnect 

• Memory 
– Capacity and Speed 

• I/O 
–  File System 
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Factors which affect I/O. 
• I/O is simply data migration. 

– Memory             Disk 
• Layout 

• Size of write/read operations 
– Bandwidth vs. Latency 

• Data continuity and locality in memory and 
on disk 
– Bandwidth vs. Latency 

• Number of processes performing I/O 
–  I/O Pattern 

• Characteristics of the file system 
– Distributed or Shared 
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Application I/O Patterns 

Serial I/O 
• Spokesperson 

– One process performs I/O. 

Parallel I/O 
• File per Process 

– Each process performs I/O to a single file. 

• Single Shared File 
– Each process collectively performs I/O to a single shared file. 

• Multiple Shared Files 
– Groups of processes perform I/O to a single shared file. 
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Parallelism  

5 

Processes 

Filesystem 



Parallelism 

• Process level parallelism 
– MPI 
–  IO Libraries (MPI-IO, HDF5, p-netCDF) 

• File System parallelism 
– Distributed File System 
– Shared Parallel File System (Lustre) 
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Limits of I/O 
• Serial I/O 

–  Is limited by the single process which performs I/O. 

• Parallel I/O 
–  Is limited by the number of disks which are concurrently 

utilized. 
– Contention for file system resources. 

• Distributed File System 
–  Files are localized on a single disk. 

• Parallel File System 
–  Files are localized on a single disk. 
–  Files are striped across multiple disks. 
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A Bigger Picture:  Lustre File System 
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A Bigger Picture:  Lustre File System 

OSS OSS 



Lustre Striping:  File Parallelism 
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• lfs setstripe 
– Stripe size    -s (default: 1M) 
– Stripe count  -c 5 (default 4, -1 All) 
– Stripe index  -i 0 (default:  -1 round robin) 
< file | directory > 



Lustre Striping:  File Parallelism  
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OSS OSS 

A Bigger Picture 

• Computational      
Nodes 
– Kraken:  8253 

• Object Storage    
Server Nodes 
– Kraken:  48  (30 GB/s) 

• Object Storage Target 
– Kraken:  336 (2.4 PB) 

[7.2 TB Disk] 



Spokesperson – Serial I/O 
Importance of data locality 
•  32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size 

 Lustre   
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Spokesperson – Serial I/O 
Importance of data continuity 

 Lustre   
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Data Locality and Continuity 

• Data Locality 
– Performance is decreased when a single process 

accesses multiple disks. 
–  Is limited by the single process which performs I/O. 

• Data Continuity 
–  Larger read/write operations improve performance. 
–  Larger stripe sizes improve performance (places 

data contiguously on disk). 
– Either may become a limiting factor. 
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Single Shared File 

• Important Considerations 
– Data locality 
– Data continuity 

• Parallel file Structure 

Lustre 
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Single Shared File 

Lustre 
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Single Shared File 
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Data Locality and Continuity 

• Data Locality 
– Performance is increased when portions of a 

shared file are localized on a single drive. 
– Contention is minimized. 

• Data Continuity 
–  Larger read/write operations improve performance. 
–  Larger stripe sizes improve performance (places 

data contiguously on disk). 
– Either may become a limiting factor. 
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Scalability:  File Per Process 

• 128 MB per file and a 32 MB Transfer size 
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Scalability:  Single Shared File 

• 32 MB per process, 32 MB Transfer size and Stripe size 
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Scalability 

• Serial I/O 
–  Is not scalable.  Limited by single process which 

performs I/O. 

• File per Process 
–  Limited at large process/file counts by: 

• Metadata Operations 
• FileSystem Contention 

• Single Shared File 
–  Limited at large process counts by filesystem 

contention.   
–  File striping limitation of 160 OSTs in Lustre 
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Buffered I/O 
• Advantages 

– Aggregates smaller read/write 
operations into larger operations. 

– Examples:  OS Kernel Buffer,  
MPI-IO Collective Buffering 

• Disadvantages 
– Requires additional memory for 

the buffer.   
– Can tend to serialize I/O. 

• Caution 
–  Frequent buffer flushes can 

adversely affect performance. 
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Standard Output and Error 

• Standard Ouput and Error 
streams are effectively serial I/O. 

• Generally, the MPI launcher will 
aggregate these requests.  
(Example:  mpirun, mpiexec, 
aprun, ibrun, etc..) 

• Disable debugging messages 
when running in production 
mode. 
–  “Hello, I’m task 32000!” 
–  “Task 64000, made it through loop.” 
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Binary Files and Endianess 
• Writing a big-endian binary file with compiler                 

flag byteswapio 
File “XXXXXX" 
                Calls Megabytes Avg Size 
Open                1         
Write         5918150     23071.28062          4088 
Close               1         
Total         5918152     23071.28062          4088

• Writing a little-endian binary
File “XXXXXX" 
                Calls Megabytes Avg Size 
Open                1         
Write             350     23071.28062      69120000 
Close               1         
Total             352     23071.28062      69120000

• Can use more portable file formats such as HDF5, 
NetCDF, or MPI-IO. 
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Case Study:  Parallel I/O 
• A particular code both reads and writes a 377 GB file.  

Runs on 6000 cores. 
–  Total I/O volume (reads and writes) is 850 GB. 
– Utilizes parallel HDF5 

• Default Stripe settings:  count 4, size 1M, index -1. 
–  1800 s run time (~ 30 minutes) 

• Stripe settings:  count -1, size 1M, index -1. 
–  625 s run time (~ 10 minutes) 

• Results 
–  66% decrease in run time. 
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Case Study:  Buffered I/O 
• A post processing application writes a 1GB file. 
•  This occurs from one writer, but occurs in many small write operations. 

–  Takes 1080 s (~ 18 minutes) to complete. 
•  IOBUF was utilized to intercept these writes                                                                      

with 64 MB buffers. 
–  Takes 4.5 s to complete.  A 99.6% reduction in time. 

File "ssef_cn_2008052600f000" 
                Calls         Seconds       Megabytes   Megabytes/sec   Avg Size 
Open                1        0.001119 
Read              217        0.247026        0.105957        0.428931        512 
Write         2083634        1.453222     1017.398927      700.098632        512 
Close               1        0.220755 
Total         2083853        1.922122     1017.504884      529.365466        512 
Sys Read            6        0.655251      384.000000      586.035160   67108864 
Sys Write          17        3.848807     1081.145508      280.904052   66686072 
Buffers used            4 (256 MB) 
Prefetches              6 
Preflushes             15 
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IOBUF  -Beta Library 

• module load iobuf/beta 
• Relink application with the Cray wrappers (ftn, cc, CC) 
• Controlled by environmental variable at runtime. 

–  setenv IOBUF_PARAMS ‘*:verbose’ 
– man iobuf    for more information 

• Intercepts standard I/O calls.  May not operate with the 
use of I/O libraries such as netcdf. 
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MPI-IO Usage 

• Included in the Cray MPT library. 
• Environmental variable used to help MPI-IO optimize I/O 

performance. 
–  setenv MPICH_MPIIO_HINTS 
– man mpi     for more information 

• If given appropriate information (stripe count, size) can 
choose aggregators in collective operations that are 
Lustre stripe aligned.  (collective buffering).  
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Conclusions 

• Serial I/O  
–  For a single process is limited by the single I/O stream. 
–  For a file-per-process pattern limitation is due to simultaneous metadata 

operations (file open) at large core counts.  Additionally, increasing 
contention for file system resources can adversely affect performance. 

• Parallel I/O 
–  For a single shared file limitation is due to file system contention at large 

core counts.  Lustre limitation of 160 OSTs per file. 
–  MPI-IO can be utilized to minimize file system contention at large core 

counts by utilizing collective buffering and appropriate hints. 

•  Lustre 
–  Appropriate stripe settings should be utilized to minimize file system 

contention. 
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